The induction of the mating program in the phytopathogen Ustilago maydis is controlled by a G1 cyclin.
نویسندگان
چکیده
Our understanding of how cell cycle regulation and virulence are coordinated during the induction of fungal pathogenesis is limited. In the maize smut fungus Ustilago maydis, pathogenesis and sexual development are intricately interconnected. Furthermore, the first step in the infection process is mating, and this is linked to the cell cycle. In this study, we have identified a new G1 cyclin gene from U. maydis that we have named cln1. We investigated the roles of Cln1 in growth and differentiation in U. maydis and found that although not essential for growth, its absence produces dramatic morphological defects. We provide results that are consistent with Cln1 playing a conserved role in regulating the length of G1 and cell size, but also additional morphological functions. We also present experiments indicating that the cyclin Cln1 controls sexual development in U. maydis. Overexpression of cln1 blocks sexual development, while its absence enables the cell to express sexual determinants in conditions where wild-type cells were unable to initiate this developmental program. We conclude that Cln1 contributes to negative regulation of the timing of sexual development, and we propose the existence of a negative crosstalk between mating program and vegetative growth that may help explain why these two developmental options are incompatible in U. maydis.
منابع مشابه
Polar growth in the infectious hyphae of the phytopathogen ustilago maydis depends on a virulence-specific cyclin.
The maize smut fungus Ustilago maydis switches from yeast to hyphal growth to infect maize (Zea mays) plants. This switching is promoted by mating of compatible cells and seems to be required for plant penetration. Although many genes distinctively expressed during this dimorphic switch have been identified and shown to be essential for the infection process, none seems to be explicitly require...
متن کاملA role for the DNA-damage checkpoint kinase Chk1 in the virulence program of the fungus Ustilago maydis.
During induction of the virulence program in the phytopathogenic fungus Ustilago maydis, the cell cycle is arrested on the plant surface and it is not resumed until the fungus enters the plant. The mechanism of this cell cycle arrest is unknown, but it is thought that it is necessary for the correct implementation of the virulence program. Here, we show that this arrest takes place in the G2 ph...
متن کاملInhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
The regulation of cyclin-dependent kinase (CDK) activity through inhibitory phosphorylation seems to play an important role in the eukaryotic cell cycle. We have investigated the influence that inhibitory phosphorylation of the catalytic subunit of mitotic CDK has on cell growth and pathogenicity of the corn smut fungus Ustilago maydis. This model pathogen is worthy of attention since it is wel...
متن کاملThe DNA damage response signaling cascade regulates proliferation of the phytopathogenic fungus Ustilago maydis in planta.
In the phytopathogenic fungus Ustilago maydis, the dikaryotic state dominates the period of growth occurring during the infectious phase. Dikaryons are cells in which two nuclei, one from each parent cell, share a single cytoplasm for a period of time without undergoing nuclear fusion. In fungal cells, maintenance of the dikaryotic state requires an intricate cell division process that often in...
متن کاملThe Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis.
In the phytopathogenic fungus Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bE and bW, encoded by the b-mating-type locus. We have identified a b-dependently induced gene, clampless1 (clp1), that is required for the proliferation of dikaryotic filaments in planta. We show that U. maydis hyphae develop structures functionally equivalent to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 17 12 شماره
صفحات -
تاریخ انتشار 2005